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1 INTRODUCTION                                                                     

An operator T is said to be Self adjoint operator, If T satisfies 
. An operator T is said to be normal, If T satisfies 

. An operator T is said to be n-power normal, If  T  
satisfies . An operator T is said to be binormal, If  

and  commute (i.e)  . An opera-
tor T is said to be quasi normal, If  T and  commute. An 
operator T is said to be quasi-n-normal, If  T and com-
mute. An operator T is said to be quasi-P  normal, If  
and commute. An operator T is said to be quasi-n-P  nor-
mal, If  and commute. 
 

SOME PROPERTIES OF QUASI-P NORMAL AND 
QUASI–n-P NORMAL OPERATORS 
THEOREM-1:  If  is isometry, Then T is Quasi-p 
normal. 
PROOF: Let T is isometry, we have  
Now 
 

 
 

From (1) and (2) are same. 
Hence T is quasi-p normal. 
 
THEOREM -2 : Every quasinormal operator is quasi-p normal. 
PROOF: Let T is quasinormal operator, Then  
                          

                                                                 (3) 
   Taking adjoint on the both side of (3) we get,  
                           
                                                                        (4) 

 
                                    

                                                                      (5) 
   From (5), Hence T is quasi-p normal. 
  
THEOREM-3: If T is a quasi-n-p normal and µ is any scalar 
which is real. Then µT is also a quasi-n-p normal operator. 
PROOF: Let T is quasi-n-p normal operator, Then 
                     
If µ is any scalar which is real, Then  
                                      , µ is real 

 
                                                                 (6) 

 
                                                                (7) 
From (6) and (7), We get, 
Therefore   is quasi-n-p normal operator. 
 
THEOREM-4: If T is a self-adjoint operator then T is a quasi-n-
p normal. 
PROOF: Let T is a self-adjoint operator 
                                                                                           (8)                
Now,                                 
                          
                                                                                         (9) 
                          
                                                                                     (10) 
                                                                                                                                                           
From (9) and (10), Hence T is quasi-n-p normal. 
                                                                                                                                                     
THEOREM-5: Let T be a quasi-n-p normal operator on a Hil-
bert space H. Let S be a self-adjoint operator for which T and S 
commute, Then ST is also a quasi-n-p normal. 
 
 
 

• D.SENTHIL KUMAR.senthilsenkumhari@gmail.com 
 

• N.REVATHI.revathinagaraj111@gmail.com 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019                                                                                             952 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org  

THEOREM-6: Let T Є B(H) be a quasi-n-p normal operator 
which is unitary equivalent to S if and only if and 

. Then S is a quasi-n-p normal. 
 
THEOREM-7: If T is a quasi-n-normal operator which is n-
power normal also, Then T is quasi-n-p normal operator. 
 
THEOREM-8: Let  and  be a two quasi-n-p normal opera-
tors which each is the  adjoint of the other, Then  is a qua-
si-n-p normal operator. 
 
THEOREM-9: If T be a self adjoint operator on a Hilbert space 
H and S be any operator on H, Then  is a quasi-n-p nor-
mal operator on H 
. 
THEOREM-10: If T  is  a quasi-n-p normal. Then  is  a qua-
si-n-p normal operator. 
PROOF: Let T  is  a quasi-n-p normal. 
                                                                           
                                      (11) 
Substituting   for T in (11), We have  
                        
                       (12) 
Hence   is quasi-n-p normal. 
 
THEOREM-11: Let T be a quasi-n-p normal operator. Which is 
a unitary   operator also, then  is a quasi-n-p normal. 
 
THEOREM-12: Let T Є B (H),  and 

, Then T is quasi-n-p normal operator if 
and only if A commutes with B. 
 
THEOREM-13: Let T Є B (H),  

 and , Then T is 
quasi-n-p normal operator if and only if X commutes with A 
and  B. 
 
QUASI-P NORMAL AND QUASI–n-P NORMAL 
COMPOSITION OPERATORS 
Let  be the composition operator on . Then the ad-

joint  is given by  for  in . 

Lemma-14: Let  be the projection of  onto . 

Then 

(i)  and ,for all . 

(ii) . 

(iii) If  is  measurable,  and  belong to , 

then ,(f need not be in . 

(iv)  for . 

       (v) . 

       (vi)  is the identity operator on if and only if 

. 

The following theorem characterizes the quasi-p normal and 

quasi – n -p normal composition operators. 

THEOREM-15: Every quasinormal composition operator is 
quasi-p normal operator. 
PROOF: Let C is quasinormal composition operator, then 
                                                          (13) 
Taking adjoint on both side in (13), We get 
           
                
                               
                
                           
                                             
 Hence C is quasi-p normal composition operator. 
 
THEOREM-16: A composition operator C on  is quasi-p 
normal if and only if   is quasi-p normal. 
 
THEOREM-17: A composition operator C on  is quasi-p 
normal if and only if  commutes with . Where   
is the multiplication operator induced by  
 
THEOREM-18: Let C be the quasi-p normal operator if and 
only if  

. 
PROOF: Let C is quasi-p normal operator, then 
                      
                  
Consider, 
                                 
                                                                             
                               
                                                                   
                             
                                                                               

   
                                                 
Hence,C is a quasi-p normal if and only if,  

. 
 
THEOREM-19: Let , then  is quasi-p normal 
operator if and only if  

 
 
THEOREM-20: If C is quasi-n-normal and n-power normal 
operator, Then C is quasi-n-p normal composition operator. 
 
THEOREM-21: Let C in   is quasi-n-p normal composi-
tion operator. Then  is quasi –n -p normal   composition  
operator. 
 
THEOREM-22: If C is quasi-n-p normal composition opera-
tor on . Then αC is quasi-n-p normal composition op-
erator for every real number α. 
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THEOREM-23: A composition operator C on  is quasi-n-
p normal if and only if  commutes with  
 
THEOREM-24: Let C be quasi-n-p normal if and only if 

. 
 
THEOREM-25: Let  Then  is the quasi-n-p 
normal operator if and only if  

. 
 
QUASI-P NORMAL AND QUASI–n-P NORMAL  
WEIGHTED COMPOSITION OPERATORS 
Let  be the weighted composition operator on . 

 Let  be its adjoint which is given by 

 for . For a positive inte-

ger , . For , 

 and  

Proposition-26: For ; 

(i) . 

(ii) . 

THEOREM-27:Let W be a weighted composition opera-
tors.Then W is quasi-p normal operator if and only if 

) 
+ =

+  
 
PROOF: Let W is a quasi-p normal operator,  Then 
          

 
Consider,  
       
                        
    
                         
      
                         

 
                           
Hence W is quasi-p normal operatorif and only if 

+
= +

 
 
THEOREM-28: Let W be a weighted composition operator. 
Then   is quasi-p normal operator if and only if  

=
+  

 
 
 

THEOREM-29: Let W be a weighted composition operators. 
Then W is quasi-n-p normal operator if and only if 

 
 
THEOREM-30: Let W be a weighted composition operators. 
Then  is quasi-n-p normal operator if and only 
if  

 . 
 
QUASI-P NORMAL AND QUASI–n-P NORMAL 
COMPOSITE MULTIPLICATION OPERATORS 
  A composite multiplication operator is a linear transfor-
mation acting on a set of complex valued measurable func-
tions  of the form    .      

.Where  is a  complex valued -measurable 
function. In case,  almost everywhere becomes a 
composition operator. The adjoint of  is given by  

. 
  
THEOREM-31: Let   on  be a composite multiplica-
tion operator. Then for each, λ ≥ 0,   is a quasi-p normal 
operator if and only if  

 =  
+ . 
 
THEOREM-32: Let   on  be a composite multiplica-
tion operator. Then for each, λ ≥ 0,  is quasi-p normal   
operator if and only if  
+  

+  
 
THEOREM-33: Let  on  be a composite multiplica-
tion operator, Then for each λ ≥ 0,  is quasi-n-p normal 
operator if and only if ) 

+ E

…..  
. 

 
THEOREM-34: Let  on  be a composite multiplica-
tion operator, Then for each λ ≥ 0, is quasi-n-p normal 
operator ifand only if  

  
(  
=  
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